skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Allen, Doug_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract FatPlants, an open-access, web-based database, consolidates data, annotations, analysis results, and visualizations of lipid-related genes, proteins, and metabolic pathways in plants. Serving as a minable resource, FatPlants offers a user-friendly interface for facilitating studies into the regulation of plant lipid metabolism and supporting breeding efforts aimed at increasing crop oil content. This web resource, developed using data derived from our own research, curated from public resources, and gleaned from academic literature, comprises information on known fatty-acid-related proteins, genes, and pathways in multiple plants, with an emphasis on Glycine max, Arabidopsis thaliana, and Camelina sativa. Furthermore, the platform includes machine-learning based methods and navigation tools designed to aid in characterizing metabolic pathways and protein interactions. Comprehensive gene and protein information cards, a Basic Local Alignment Search Tool search function, similar structure search capacities from AphaFold, and ChatGPT-based query for protein information are additional features. Database URL: https://www.fatplants.net/ 
    more » « less
  2. Summary Metabolic flux analysis (MFA) is a valuable tool for quantifying cellular phenotypes and to guide plant metabolic engineering. By introducing stable isotopic tracers and employing mathematical models, MFA can quantify the rates of metabolic reactions through biochemical pathways. Recent applications of isotopically nonstationary MFA (INST‐MFA) to plants have elucidated nonintuitive metabolism in leaves under optimal and stress conditions, described coupled fluxes for fast‐growing algae, and produced a synergistic multi‐organ flux map that is a first in MFA for any biological system. These insights could not be elucidated through other approaches and show the potential of INST‐MFA to correct an oversimplified understanding of plant metabolism. 
    more » « less